Evaluating Environmental Risks of Marine and Hydrokinetic (MHK) Development

Dr. Andrea E. Copping

Pacific Northwest National Laboratory

CESA Webinar August 19th 2010

Environmental Effects of MHK Energy Development

Project purpose: To address environmental issues needed to get MHK devices in the water through four tasks:

- 1. Classifying & evaluating environmental effects
 - Organize data into a "smart", searchable database
 - Use risk assessment tools to determine the really important risks
 - This task integrates the other tasks in the project
- 2. Effects of energy removal from waterbodies
- 3. Effects on animals
 - Electromagnetic fields
 - Acoustic output
 - Physical interaction
 - Strike, entrainment, impingement
 - Attraction, avoidance
- 4. Siting constraints and opportunities
 - Stakeholder engagement and spatial planning

MHK Knowledge Management System, aka "Tethys"

- Named for Greek Titan goddess (daughter of Gaia, wife of Oceanus) who was seen as the embodiment of the oceans on earth
- Primary function of the system is as a knowledge base to support the risk framework (ERES)
 - Evidence collection and marshalling
 - Data navigation and management of risk model results
- Other functions expected to be important
 - Knowledge portal for various stakeholders
 - Portal to other knowledge sources (e.g., Annex IV database under construction)
 - Collaborative environment for MHK research

Tethys serves as knowledge management framework for MHK environmental studies

Tethys image courtesy of Wikipedia and used under Creative Commons license

Tethys platform features:

- Automated ingest of documents into a wiki-like environment
 - PDF files, Word documents, web pages, etc
 - Automatic semantic encoding of many meta-data fields
- Semantic "pipeline" processing to aid in recognizing and tagging key types of entities
 - People
 - Places
 - Specific vocabulary terms
- Rich annotation features
- Semantic search

Tethys Screen Shots

Screen Shot 1: FERC permit data imported into map view

Tethys Screen Shots

Screen Shot 2: Drill-down to individual project

Tethys Screen Shots

Screen Shot 3: Doc association with FERC record via semantic link

Environmental Interactions of MHK Devices Operational Phase

Environmental Risk Evaluation System (ERES) for MHK

- Decision support tool to address environmental issues and get devices in the water
- System for evaluating risk of an MHK project by attributes of:
 - Technology components
 - Waterbodies
 - Site characteristics
 - Receptors (aquatic animals, aquatic system response, etc.)
- Use of cases to compile risk-relevant attributes; multiple cases will help "span the analytical space"
- Accumulation of cases will define risk of MHK devices/arrays to create predictive power
- Risk will be assigned to attributes of cases using:
 - (initially) Expert opinion
 - (as they become available) Experimental, monitoring, and modeling data

What We Mean by Risk:

Process for Developing MHK Environmental Risk Evaluation System

ERES Case Selection Criteria

- 1. Real/Readiness (in water w/in 2 yrs; ready technology + ready project)
- 2. Developer Willingness (willing to share technology + project data)
- 3. Diverse Representation (does the case span the analytical space)
 - a) Technology Type (tidal, wave, riverine)
 - b) Technology Configuration (e.g. axial flow, horizontal flow)
 - c) Climatic Zone (temperate, tropical, sub-arctic)
- 4. National Interest (e.g. recipient of DOE funding)
- 5. Available Data (environmental effects data available)

Decision rules: No/insufficient → Reconsider later or make improvements

Yes/Optimal → Next question or select

Initial Case Selections

- Three risk cases to screening analysis level in FY10; more cases in FY11-12
- Cases drawn from real projects
- One tidal, one wave, one riverine
 - 1. TIDAL Open Hydro in Admiralty Inlet, WA
 - Open-Center Turbine in Puget Sound, WA
 - Ducted, axial flow, gravity mounted
 - Temperate estuarine
 - Bidirectional water flow
 - Protected Southern Resident Killer Whales, other marine mammals, ESA listed species

FY10 Case Selections

- 2. RIVERINE Free Flow Energy at Scotlandville Bend, Mississippi River
 - Ducted, axial flow, bottom-mounted, multiple units
 - Shallow riverine (comparatively)
 - Unidirectional water flow
 - Migrating birds, endangered sturgeon
- 3. WAVE OPT PowerBuoy off Reedsport, OR
 - Point attenuator

Dominant wave direction

Migrating whales, endangered fish

Process for Developing MHK Environmental Risk Evaluation System

Current ERES Work

- Screening Analysis:
 - Determine risk-relevance of each stressor/receptor interaction
 - Determine "risk factors" to rank stressor/receptor interactions:
 - population size
 - affected life stage
 - proximity to device
 - Work with scientists to rank risks for each receptor according to risk factors
- Output = Three screening analyses by Oct 2010

Ranking Scheme

Take into account risk weighting:

Migrating fish

- 1. Blade strike *Tidal*
- 2. Behavior, attraction *Wave*

3....

Endangered marine mammals

- 1. Entanglement mooring lines *Wave*
- 2. Blade strike *Tidal*
- 3. Change in migration, avoidance *Wave*

Changes in water quality, sedimentation patterns

- 1. Scour of river bed *River*
- 2. Hypoxia farfield *Tidal*
- 3. Change in beach form *Wave*

Benthic habitats

- 1. Disturbance due to anchoring *Wave*
- 2. Scour of river bottom *River*
- 3.....

Sort

rank

Next Steps and Outcomes of ERES

- Risk modeling: (2010-2012)
 - Deterministic, probabilistic, impact assessment, sensitivity analysis
 - Output = risk scores
- Design of risk management, mitigation
- Risk Communication:
 - Guidance for regulators
 - Visualization tools

For More Information

Project website: www.advancedh2opower.com/PNNL

Annex IV

- International Energy Agency Ocean Energy Systems
 - "Annex" is an agreement to carry out collaborative tasks
- IEA Annex IV
 - Eight member nations, U.S. is lead, DOE/MMS/FERC
 - Gather environmental effects data from member nations, evaluate effects, monitoring methods, mitigation strategies
- PNNL will lead for U.S.
 - Create portion of *Tethys* for Annex IV data
 - Contractor to assist with data collection, analysis
 - Experts' workshop in Dublin in September

Acknowledgements & Contact Information

This work supported by the US Department of Energy Office of Energy Efficiency and Renewable Energy's Wind & Hydropower Technologies Office (WHTP)

KEF development supported by the PNNL Technosocial Predictive

Analytics Initiative (TPAI)

Contact Information:

ERES, overall MHK project

Andrea Copping – <u>andrea.copping@pnl.gov</u>

Richard Anderson – <u>richard.anderson@pnl.gov</u>

Brie Van Cleve – <u>brie.vancleve@pnl.gov</u>

Tethys

Scott Butner - scott.butner@pnl.gov
Lesley Snowden-Swan - lesley.snowden-swan@pnl.gov

